Search results

Search for "transition-metal dichalcogenides" in Full Text gives 39 result(s) in Beilstein Journal of Nanotechnology.

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • modes is proposed to evaluate the surface coverage for each N (i.e., the ratio between the surface covered by exactly N layers and the total surface) in DLI-PP-CVD MoS2 samples. Keywords: molybdenum disulfide; number of layers; Raman spectroscopy; thin film; transition metal dichalcogenides
  • ; Introduction The advent of two-dimensional (2D) layered materials beyond graphene has initiated a new field of research [1][2][3]. In the family of 2D layered structures, transition metal dichalcogenides (TMDs) have attracted considerable attention from academia and regarding potential applications [4][5][6][7
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • properties, that is, plasmonic materials (e.g., Au, Ag, and Pt), semiconductor materials (e.g., transition metal oxides, transition metal chalcogenides, and transition metal dichalcogenides), carbon-based nanomaterials (such as graphene oxide and carbon nanotubes), and polymer nanomaterials [33][34] (Figure
PDF
Album
Review
Published 04 Oct 2023

Liquid phase exfoliation of talc: effect of the medium on flake size and shape

  • Samuel M. Sousa,
  • Helane L. O. Morais,
  • Joyce C. C. Santos,
  • Ana Paula M. Barboza,
  • Bernardo R. A. Neves,
  • Elisângela S. Pinto and
  • Mariana C. Prado

Beilstein J. Nanotechnol. 2023, 14, 68–78, doi:10.3762/bjnano.14.8

Graphical Abstract
  • allows it to be employed to obtain nanoflakes of a collection of materials such as graphene [3][7], hexagonal boron nitride [8], transition metal dichalcogenides [9], and others [10][11]. Although the experimental setup is generally designed as described before [6], numerous parameters must be adjusted
PDF
Album
Full Research Paper
Published 09 Jan 2023

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • . Keywords: 2D materials; graphene transfer process; large-scale fabrication; microelectronics; poly(methyl methacrylate); Introduction Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the focus of an intense research effort aimed at developing a new class of innovative
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • /bjnano.13.11 Abstract Transition metal dichalcogenides (TMDs) with a 1T′ layer structure have recently received intense interest due to their outstanding physical and chemical properties. While the physicochemical behaviors of 1T′ TMD monolayers have been widely investigated, the corresponding properties
  • ′ polytype; anisotropy; density functional theory; layered transition metal dichalcogenide crystals; shear modulus; Young’s modulus; Introduction Layered transition metal dichalcogenides (TMDs) have received increasing attention as important and versatile materials for new applications in different sectors
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • ]. Various 2D transition metal dichalcogenides have also been the subject of conductivity-tuning studies in the HIM. For example, Fox et al. showed that site-selective helium ion irradiation, introducing point defects and local disorder, transformed targeted regions of a supported pristine few-layer MoS2
  • ]. In addition, density functional theory has been used to model the effect of ion-induced defects on the electronic band structure of various 2D transition metal dichalcogenides [26][30][36], and band-excitation Kelvin probe microscopy has been used to probe the resulting changes in the local work
  • regions around the intended structures (note, the graphene was not milled away) [62]. Tuning of the resonant behavior of the nanostructures was demonstrated by adjusting the irradiation dose. Closely related to the electronic property tuning of 2D transition metal dichalcogenides described earlier
PDF
Album
Review
Published 02 Jul 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • molecular wetting layers [15] and two-dimensional materials, such as graphene [16][17], hBN [11][18], or even organic layers [19]. Recently, it has been proposed that a monolayer of transition metal dichalcogenides, for example, MoS2, may play a similar role [4][20][21]. Similarly, it has been reported that
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • methods; atomic force microscopy (AFM); molecular dynamics (MD); Raman spectroscopy; nanostructured materials; Introduction Layered materials such as graphite, talc, and transition metal dichalcogenides (TMDs), held together by strong covalent bonds within layers and relatively weak van der Waals
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • materials; Introduction Layered two-dimensional (2D) semiconductors have come to the fore in recent years as promising candidates for the implementation of flexible, transparent, and low-power electronics. In particular, transition metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2), have
PDF
Album
Full Research Paper
Published 04 Sep 2020

Scanning tunneling microscopy and spectroscopy of rubrene on clean and graphene-covered metal surfaces

  • Karl Rothe,
  • Alexander Mehler,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2020, 11, 1157–1167, doi:10.3762/bjnano.11.100

Graphical Abstract
  • , which is assigned to vibronic progression induced by a single group of molecular vibrations with similar quantum energies. Another type of two-dimensional materials is represented by single layers of transition metal dichalcogenides. A single layer of MoS2 on Au(111) has recently been used to
PDF
Album
Full Research Paper
Published 03 Aug 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • of decoupling layers made use of the in situ fabrication of single layers of transition metal dichalcogenides on metal surfaces. A monolayer of MoS2 on Au(111) provided very narrow molecular resonances, close to the thermal resolution limit at 4.6 K [26]. The exquisite decoupling efficiency has been
  • and K′ by circularly polarized light [32]. The potential as decoupling layer for molecules may become even more appealing by the fact that monolayers of transition metal dichalcogenides can be grown in situ on different metal surfaces, where the precise hybridization and band alignment depend on the
PDF
Album
Full Research Paper
Published 20 Jul 2020
Graphical Abstract
  • unique properties that result from their atomic-scale thickness [1][2][3][4][5]. These materials, which include graphene, hexagonal boron nitride, and the large family of transition metal dichalcogenides, have electronic structures exhibiting metallic, semiconducting, and insulating properties. Novel
PDF
Album
Full Research Paper
Published 24 Apr 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • exfoliation. However, the scalability of CVD and ALD processes makes 2D materials grown via these methods more realistic for a wider range of applications [4]. Transition metal dichalcogenides (TMDs) are of particular interest as they exhibit a large variety of properties. TMDs such as MoS2 are intrinsic
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • -based devices, hybrid perovskite thin films and single crystals as well as type-II van der Waals heterojunctions based on transition metal dichalcogenides. Experimental Nc-AFM and pp-KPFM Noncontact-AFM (nc-AFM) experiments were performed with a ScientaOmicron VT-AFM setup in UHV at room temperature (RT
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • subsequently disperses. Consequently, the reutilization of Li2Sn will become very hard due to the repulsion between the nonpolar conductive surface and the polar reactants [17]. Two-dimensional layered transition metal dichalcogenides (TMDs), strong candidates in the search for energy storage and catalyst
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • phosphorus (BP) [2][3], hexagonal boron nitride (h-BN) [4][5] and transition metal dichalcogenides (TMDCs) with a common chemical formula MX2 [6][7][8][9][10]. Due to the many excellent electronic, mechanical and optoelectronic properties, TMDCs are highly attractive for fundamental studies of novel physical
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • -dimensional CuO petal assemblies (by Abe and co-workers [133]), perovskite nanosheets and their layer-by-layer assemblies as high-k dielectric/ferroelectric materials (by Osada and Sasaki [134]), the manipulation of transition-metal dichalcogenides nanosheets for the usage in energy storage/conversion
PDF
Album
Review
Published 30 Jul 2019

Electronic and magnetic properties of doped black phosphorene with concentration dependence

  • Ke Wang,
  • Hai Wang,
  • Min Zhang,
  • Yan Liu and
  • Wei Zhao

Beilstein J. Nanotechnol. 2019, 10, 993–1001, doi:10.3762/bjnano.10.100

Graphical Abstract
  • graphene has led to extensive research efforts on two-dimensional (2D) materials. Although graphene exhibits large carrier mobility and intriguing mechanical properties, its zero bandgap impedes its application in spintronic devices [1][2]. Subsequently, 2D transition-metal dichalcogenides (TMDs) have
PDF
Album
Full Research Paper
Published 02 May 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • transition-metal dichalcogenides (TMDs) [9], phosphorene [10][11], and hexagonal boron nitride (h-BN) [8], among others [12][13], which are suitable for applications in electronic and photonic devices. However, in order to improve performance and possibly access new properties, the quest for new 2D compounds
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel 10.3762/bjnano.10.81 Abstract Nanostructures of transition-metal dichalcogenides (TMDC) have raised scientific interest in the last few decades. Tungsten disulfide (WS2) nanotubes and nanoparticles are among
  • two hexagonal sulfur layers. WS2 belongs to a family of compounds called transition-metal dichalcogenides (TMDCs), with a general formula of MX2 (M = W, Mo and X = S, Se, Te) and a similar structure based on triple-layers. Good mechanical properties of WS2 inorganic nanotubes (INTs; up to 15 µm length
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • spectroscopy; molybdenum disulfide (MoS2) monolayer; two-dimensional transition-metal dichalcogenides (2D TMDC); Introduction Two-dimensional transition metal dichalcogenide (2D TMDC) materials have drawn wide attention because of their fascinating physical and chemical properties [1][2][3][4][5][6]. Given
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Choosing a substrate for the ion irradiation of two-dimensional materials

  • Egor A. Kolesov

Beilstein J. Nanotechnol. 2019, 10, 531–539, doi:10.3762/bjnano.10.54

Graphical Abstract
  • eV/ion (Xe in copper), which corresponds to an average sputtered atom energy of 22.1 and 320.1 eV/atom, respectively. The former value is already enough to introduce defects into common two-dimensional materials [18][19][20][21][22], most strongly manifesting for 2D transition metal dichalcogenides
PDF
Album
Full Research Paper
Published 22 Feb 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • well with the reported 2D transition metal dichalcogenides. A PtSe2 nanosheet-based sensor device was tested for its applicability as a humidity sensor and photodetector. The humidity sensor based on PtSe2 nanosheets showed an excellent recovery time of ≈5 s, indicating the great potential of PtSe2 for
  • , field emitters, battery materials, light harvesting and energy storage devices, catalyst for H2 generation, and drug delivery applications [7][8][9][10][11][12]. Most of the transition metal dichalcogenides (TMDCs) are semiconducting in nature with MX2 type – where M is a metal, M = W, Mo, Sn, Nb, V
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • ” saturable absorbers (SAs) for lasers operating in the passively Q-switched (PQS) and mode-locked regimes. These include carbon nanostructures (e.g., graphene, graphene oxide, graphite nanoparticles, single-walled carbon nanotubes (SWCNTs)) [12][13][14][15], few-layer transition metal dichalcogenides (TMDs
PDF
Album
Full Research Paper
Published 23 Oct 2018

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • would give rise to an expected dispersion of the binding energy of dopants depending on external factors. Accordingly, it has been shown, using first principles calculations in transition-metal dichalcogenides, that dopants can be tuned from deep to shallow by using different substrates [34]. This
  • binding energies of 51 transition-metal dichalcogenides. We follow the same approach here, taking a constant ε to estimate the binding energies. We adopt isotropic envelopes, simplifying the calculations while keeping the physical picture [37]. In this approximation, the 2D bound state of hydrogen is
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018
Other Beilstein-Institut Open Science Activities